All Subkeys Recovery Attack on Block Ciphers: Extending Meet-in-the-Middle Approach

نویسندگان

  • Takanori Isobe
  • Kyoji Shibutani
چکیده

We revisit meet-in-the-middle (MITM) attacks on block ciphers. Despite recent significant improvements of the MITM attack, its application is still restrictive. In other words, most of the recent MITM attacks work only on block ciphers consisting of a bit permutation based key schedule such as KTANTAN, GOST, IDEA, XTEA, LED and Piccolo. In this paper, we extend the MITM attack so that it can be applied to a wider class of block ciphers. In our approach, MITM attacks on block ciphers consisting of a complex key schedule can be constructed. We regard all subkeys as independent variables, then transform the game that finds the user-provided key to the game that finds all independent subkeys. We apply our approach called all subkeys recovery (ASR) attack to block ciphers employing a complex key schedule such as CAST128, SHACAL-2, KATAN, FOX128 and Blowfish, and present the best attacks on them with respect to the number of attacked rounds in literature. Moreover, since our attack is simple and generic, it is applied to the block ciphers consisting of any key schedule functions even if the key schedule is an ideal function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic Key Recovery Attack on Feistel Scheme

We propose new generic key recovery attacks on Feistel-type block ciphers. The proposed attack is based on the all subkeys recovery approach presented in SAC 2012, which determines all subkeys instead of the master key. This enables us to construct a key recovery attack without taking into account a key scheduling function. With our advanced techniques, we apply several key recovery attacks to ...

متن کامل

Improved All-Subkeys Recovery Attacks on FOX, KATAN and SHACAL-2 Block Ciphers

The all-subkeys recovery (ASR) attack is an extension of the meet-in-the-middle attack, which allows evaluating the security of a block cipher without analyzing its key scheduling function. Combining the ASR attack with some advanced techniques such as the function reduction and the repetitive ASR attack, we show the improved ASR attacks on the 7-round reduced FOX64 and FOX128. Moreover, the im...

متن کامل

Automated Dynamic Cube Attack on Block Ciphers: Cryptanalysis of SIMON and KATAN

A few work has ever been performed in cryptanalysis of block ciphers using cube attacks. This paper presents a new framework for an efficient key recovery attack on block ciphers based on cube technique. In this method, a cube tester is positioned at the middle of the cipher which is extended in two directions over the maximum possible upper and lower rounds, given that some subkey bits are gue...

متن کامل

Automated Dynamic Cube Attack on Block Ciphers

A little work has ever been performed in cryptanalysis of block ciphers using cube technique. This paper presents a new framework for an efficient key recovery attack on block ciphers using a kind of dynamic cube attack. In this method, a cube tester is positioned at the middle of the cipher which is extended in two directions over the maximum possible upper and lower rounds, provided that some...

متن کامل

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes

Improved meet-in-the-middle cryptanalysis with efficient tabulation technique has been shown to be a very powerful form of cryptanalysis against SPN block ciphers. However, few literatures show the effectiveness of this cryptanalysis against Balanced-Feistel-Networks (BFN) and Generalized-Feistel-Networks (GFN) ciphers due to the stagger of affected trail and special truncated differential trai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012